ERK activation in arsenite-treated G1-enriched CL3 cells contributes to survival, DNA repair inhibition, and micronucleus formation.

نویسندگان

  • Ju-Pi Li
  • Jin-Ching Lin
  • Jia-Ling Yang
چکیده

Arsenite is known to induce chromosomal damage and extracellular signal-regulated kinases 1/2 (ERK) signaling transduction pathway. Arsenite also perturbs mitotic spindle and induces G2/M prolongation, leading to genomic instability. However, little is known concerning whether G1 phase is susceptible to arsenite in causing genomic instability and ERK activation. In this study, we investigate the roles of ERK activation in survival, micronucleus formation, and nucleotide excision repair (NER) synthesis in arsenite-treated G1-enriched CL3 human non-small-cell lung carcinoma cells. We found that G1 was the most insensitive phase to arsenite cytotoxicity, yet it was highly susceptible to arsenite in micronucleus induction. After arsenite exposure, the G1 cells exhibited a marked retard in the formation of binucleated cells when they were cultured in cytochalasin B, an inhibitor of cytokinesis, suggesting that arsenite delays the cell cycle progression. Arsenite activated sustained-ERK signal in G1 cells whose suppression further decreased cell proliferation and survival and could lower the micronucleus induction. The NER synthesis activity of G1 cells was inhibited by arsenite as a function of the extent of ERK activation. Intriguingly, blockage of ERK activation recovered NER synthesis activity in the arsenite-treated G1 cells. Together, these results suggest that ERK activation in arsenite-treated G1 cells counteracts cytotoxicity and contributes to genomic instability via NER synthesis inhibition and micronucleus induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel Increases Chromosomal Abnormalities by Interfering with the Initiation of DNA Repair Pathways

Background: Nickel is a carcinogenic, heavy metal released through industrial activities and via natural resources. It is able to cause DNA damages by reducing the efficiency of DNA repair mechanisms. However, the exact time point at which it is able to interfere with these mechanisms is not yet clearly understood. Methods: To find the most nickel-vulnerable time of repair mechanisms, human de...

متن کامل

Inhibitory effects of Cheonggukjang extracts on radiation-induced micronucleus formation and inflammasome activation

Background: People are exposed to more radiation than before with the application of radiation technology. Radiation is known to induce damage to cell structure, DNA, chromosomes and nucleus. In this study, we showed that CGJ extract can inhibit radiation-induced chromosomal damage in vivo and NLRP7 inflammasome activation in vitro, suggesting that the compound from CGJ can Be considered as a t...

متن کامل

Micronuclei formation induced by X-ray irradiation does not always result from DNA double-strand breaks.

X-ray induced formation of micronuclei is generally thought to result from DNA double-strand breaks (DSBs). However, DNA DSBs inhibit the cell cycle progression that is required for micronucleus formation. In order to reconcile this apparent discrepancy, we investigated whether DNA DSBs induced during the G1 phase could lead to micronucleus formation. We irradiated human embryonic (HE17) cells ...

متن کامل

ON THE EFFECTS OF ARA-A AND ARA-C ON X-RAY INDUCED DNA LESIONS IN NORMAL HUMAN AND A-T CELLS: SIMILARITIES AND DIFFERENCES.

A better understanding of the mechanism of chromosomal aberration formation could be obtained by using DNA repair inhibitors. Immortalized normal human (MRC 5 SVI) and ataxia telangiectasia ( AT 5 BIV A ) fibroblastic cell lines were treated with adenosine arabinoside (ara-A) and cytosine arabinoside (ara-C), both potent inhibitors of DNA dsb repair, alone or in combination with x-rays at ...

متن کامل

Arsenite induces prominent mitotic arrest via inhibition of G2 checkpoint activation in CGL-2 cells.

Arsenic compounds, which are well-documented human carcinogens, are now used in cancer therapy. Knowledge of the mechanism by which arsenic exerts its toxicity may help in designing a more effective regimen for therapy. In this study, we showed that arsenite could induce prominent mitotic arrest in CGL-2 cells and demonstrated the presence of damaged DNA in arsenite-arrested mitotic cells. We t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2006